NASA Astronomers Predict Near-Earth Asteroid’s 2029 Close Encounter

About 5 and a 1/2 years from now, astronomers predict, an asteroid about as wide as the Empire State Building is tall will streak through space within 20,000 miles (32,200 kms) of Earth, the closest any celestial object of that size will have come to our planet in modern history.

When it does, a spacecraft launched by NASA in 2016 is expected to be in position to provide a detailed examination of this rare close encounter.

The mission, directed by University of Arizona scientists, is expected to yield insights into planetary formation and knowledge that could inform efforts to build a defense system against possible doomsday asteroid collisions with Earth.

At the time of its 2004 discovery, the asteroid Apophis, named for a demon serpent embodying evil and chaos in ancient Egyptian mythology, appeared to pose a dire impact threat to Earth, with scientists forecasting a potential collision in 2029. Refined observations have since ruled out any impact risk for at least another century.

Still, its next approach in 2029 will bring the asteroid within a cosmic cat’s whisker of Earth — less than one-tenth the moon‘s distance from us and well within the orbits of some geosynchronous Earth satellites.

The spacecraft now headed for a rendezvous with Apophis is OSIRIS-REx, which made headlines plucking a soil sample from a different asteroid three years ago and sending it back to Earth in a capsule that made a parachute landing in Utah in September.

Spacecraft’s second act

Rather than retire the spacecraft, NASA has rebranded it as OSIRIS-APEX — short for APophis EXplorer — and fired its thrusters to put it on course for its next target.

The Apophis expedition was detailed in a mission overview published in the Planetary Science Journal.

Apophis, oblong and somewhat peanut-shaped, is a stony asteroid believed to consist mostly of silicate materials along with iron and nickel. Measuring about 1,110 feet (340 meters) across, it is due to pass within about 19,800 miles (31,860 kms) of Earth’s surface on April 13, 2029, becoming visible to the naked eye for a few hours, said Michael Nolan, deputy principal investigator for the mission at the University of Arizona.

“It’s not going to be this glorious show,” Nolan said, but it will appear as a point of reflected sunlight in the night sky over Africa and Europe.

An asteroid that large passing so near to Earth is estimated to occur roughly once every 7,500 years. The Apophis flyby is the first such encounter predicted in advance.

The tidal pull of Earth’s gravity likely will cause measurable disturbances to the asteroid’s surface and motion, changing its orbital path and rotational spin. Tidal forces could trigger landslides on Apophis and dislodge rocks and dust particles to create a comet-like tail.

The spacecraft is set to observe the asteroid’s Earth flyby as it nears and ultimately catches up with Apophis. These images and data would be combined with ground-based telescope measurements to detect and quantify how Apophis was altered as it passed by Earth.

OSIRIS-APEX is scheduled to remain near Apophis for 18 months – orbiting, maneuvering around it and even hovering just over its surface, using rocket thrusters to kick up loose material and reveal what lies beneath. 

Planetary science and defense

Like other asteroids, Apophis is a relic of the early solar system. Its mineralogy and chemistry are largely unchanged in more than 4.5 billion years, offering clues to the origin and development of rocky planets like Earth.

Close examination of Apophis could give planetary defense experts valuable information about the structure and other properties of asteroids. The more scientists know about the composition, density and orbital behavior of such celestial “rubble piles,” the greater the chances of devising effective asteroid-deflection strategies to mitigate impact threats.

NASA deliberately crashed a spacecraft into a small asteroid last year in a planetary-defense test that nudged the rocky object from its normal path, marking the first time humankind altered the natural motion of a celestial body.

Apophis is substantially larger than that asteroid but tiny compared with the one that struck Earth 66 million years ago, wiping out the dinosaurs.

While not big enough to pose an existential threat to life on Earth, an Apophis-sized asteroid striking the planet at hypersonic speed still could devastate a major city or region, Nolan said, with ocean impact unleashing tsunamis.

“It wouldn’t be globally catastrophic in the sense of mass extinctions,” but an impact “would definitely come under the category of bad,” Nolan said.

“This thing is coming in at many miles per second if it hits. And at that speed, it kind of doesn’t whether if it’s made of gravel or ice or rocks or whatever. It’s just a big, heavy thing moving fast,” Nolan added.

© Thomson Reuters 2023


Affiliate links may be automatically generated – see our ethics statement for details.

Check out our Latest News and Follow us at Facebook

Original Source

NASA Unveils Newly Returned Carbon-Rich Asteroid Sample

NASA on Wednesday gave the public a first glimpse of what scientists found inside a sealed capsule that was returned to Earth last month carrying a carbon-rich soil sample scooped from an asteroid‘s surface, including water-bearing clay minerals.

A small quantity of the material collected by the OSIRIS-REx spacecraft three years ago from the near-Earth asteroid Bennu was unveiled in an auditorium at NASA’s Johnson Space Center in Houston, a little more than two weeks after it was parachuted into the Utah desert.

The return capsule’s landing capped a seven-year joint mission of the US space agency and the University of Arizona. It was only the third asteroid sample, and by far the biggest, returned to Earth for analysis, following two similar missions by Japan’s space agency ending in 2010 and 2020.

“It’s days like this that continue to amaze me,” NASA chief Bill Nelson said from the stage as he introduced the first picture of material retrieved from Bennu, a celestial artifact about 4.5 billions years old, on a viewing screen.

The image showed a loose cluster of small charcoal-colored rocks, pebbles and dust found to have been left in the outer portion of the sample-collection assembly when the asteroid’s soil was sucked through a filter into the spacecraft’s storage canister.

Technicians are still methodically disassembling hardware surrounding the inner science canister containing the bulk of the specimen, a process expected to take two more weeks.

But the “bonus” sample of overflow material was immediately examined with electron microscopes and X-ray instruments, said Dante Lauretta, principal mission investigator at the University of Arizona.

What they found was material high in carbon, nearly 5% by weight of an element essential to all life on Earth, as well as water molecules locked in the crystallized structure of clay fibers, Lauretta said.

Scientists also discovered iron minerals in the form of iron sulfides and iron oxides, “which themselves are indicative of formation in a water-rich environment,” Lauretta told a later news briefing.

Daniel Glavin, a senior sample scientist at NASA’s Goddard Space Flight Center, said early analysis found the material seems to be “loaded with organics.”

The preliminary findings point to a likelihood of further discoveries that could buttress the hypothesis that early Earth was seeded with the primordial ingredients for life by celestial objects such as comets, asteroids and meteorites that bombarded the young planet.

Ancient rubble pile

Bennu, discovered in 1999, is described by scientists as a relatively loose clump of rocky material, like a rubble pile, held together by gravity. It measures about three-tenths of a mile (500 meters) across, making it slightly wider than the Empire State Building is tall but tiny compared with the Chicxulub asteroid that struck Earth some 66 million years ago, wiping out the dinosaurs.

Like other asteroids, Bennu is a relic of the early solar system. Because its present-day chemistry and mineralogy are virtually unchanged since its formation, it holds clues to the origins and development of rocky planets such as Earth, and could prove central to studies of astrobiology.

The capsule was initially inspected at the Utah Test and Training range near the landing site, then flown to Houston for closer examination in a specially built “clean room” inside a Johnson Space Center astromaterials curation facility.

In the months ahead, the overall asteroid sample is to be parceled out into smaller specimens promised to some 200 scientists in 60 laboratories around the world.

At the time it landed, the Bennu sample was estimated to weigh about 250 grams (8.8 ounces), well above the minimum amount of 60 grams (2 ounces) scientists had hoped to collect. A more precise measurement will come in a few weeks, once the canister has been fully opened and all the contents weighed.

OSIRIS-REx launched in 2016 and reached Bennu in 2018, then spent nearly two years orbiting it before venturing close enough to snatch a sample of the loose surface material with its robotic arm on October 20, 2020.

Lauretta said preliminary analysis of the first bits of the sample showed that orbital observations of the asteroid had “predicted the mineralogy very accurately.” 

NASA is due to launch a separate mission on Thursday to a more distant asteroid called Psyche, a metal-rich body believed to be the remnant core of a protoplanet and the largest known metallic object in the solar system.

© Thomson Reuters 2023


Samsung launched the Galaxy Z Fold 5 and Galaxy Z Flip 5 alongside the Galaxy Tab S9 series and Galaxy Watch 6 series at its first Galaxy Unpacked event in South Korea. We discuss the company’s new devices and more on the latest episode of Orbital, the Gadgets 360 podcast. Orbital is available on Spotify, Gaana, JioSaavn, Google Podcasts, Apple Podcasts, Amazon Music and wherever you get your podcasts.
Affiliate links may be automatically generated – see our ethics statement for details.

Check out our Latest News and Follow us at Facebook

Original Source

Supermassive Black Hole Spotted Eating Sun-Like Star in Nearby Galaxy

Black holes, celestial objects known for their gluttony, usually eat stars unlucky enough to stray too close to them in one big gulp, annihilating them with their enormous gravitational pull. But some, it turns out, tend to snack rather than gorge.

Researchers said they have observed a supermassive black hole at the center of a relatively nearby galaxy as it takes bites out of a star similar in size and composition to our sun, consuming material equal to about three times Earth‘s mass each time the star makes a close pass on its elongated oval-shaped obit.

Black holes are extraordinarily dense objects with gravity so strong that not even light can escape.

The star is located about 520 million light years from our solar system. A light year is the distance light travels in a year, 5.9 trillion miles (9.5 trillion km). It was observed being plundered by a supermassive black hole at the heart of a spiral-shaped galaxy

As such black holes go, this one is relatively small, estimated to have a mass a few hundred thousand times larger than the sun. The supermassive black hole at the center of our galaxy, called Sagittarius A*, possesses about 4 million times the mass of our sun. Some other galaxies harbor supermassive black holes hundreds of millions times the mass of the sun.

Most galaxies have such black holes at their center, and the environment around them can be among the most violent places in the universe.

Most of the data used by the scientists in the new study came from NASA‘s orbiting Neil Gehrels Swift Observatory. 

The star was observed orbiting the black hole every 20 to 30 days. At one end of its orbit, it ventures near enough to the black hole to have some material from its stellar atmosphere sucked away, or accreted, each time it passes — but not so close as to have the whole star shredded. Such an event is called a “repeating partial tidal disruption.” 

The stellar material that falls into the black hole heats up to around 3.6 million degrees Fahrenheit (2 million degrees Celsius), unleashing an immense amount of X-rays. Those were detected by the space observatory.

“What’s most likely to happen is the star’s orbit will gradually decay and it will get closer and closer to the supermassive black hole until it gets close enough to be completely disrupted,” said astrophysicist Rob Eyles-Ferris of the University of Leicester in England, one of the authors of the study published this week in the journal Nature Astronomy.

“That process is likely to take years at least — more likely decades or centuries,” Eyles-Ferris added.

This marked the first time that scientists had observed a sun-like star being repeatedly snacked upon by a supermassive black hole. 

“There are lots of unanswered questions about tidal disruption events and exactly how the orbit of the star affects them,” Eyles-Ferris said. “It’s a very fast-moving field at the moment. This one has shown us that new discoveries could come at any time.”

© Thomson Reuters 2023


Affiliate links may be automatically generated – see our ethics statement for details.

Check out our Latest News and Follow us at Facebook

Original Source

Aditya-L1 Launch Countdown Begins: When and Where to Watch the Live Streaming of ISRO’s Maiden Solar Mission

Aditya-L1, India’s first solar mission, is all set to be launched today (September 2) at 11.50am IST from the Satish Dhawan Space Centre at Sriharikota in Andhra Pradesh’s Sriharikota. The launch for the solar mission has been announced days after the Indian Space Research Organisation (ISRO) achieved success in safe landing on the moon surface with its Chandrayaan-3 mission. Aditya-L1 will be carried aboard ISRO’s PSLV rocket, which will undergo a space journey of 125 days. The name Aditya in the mission name stands for Sun.

Aditya-L1 Solar mission launch: When and where to watch online

The Indian Space Research Organisation will launch its maiden solar mission at 11.50am IST. According to the space agency, the Aditya-L1 launch live streaming will be made available on various social media platforms, starting at 11.20am IST. One can watch the live event  of Aditya-L1 launch on ISRO’s Facebook page, and ISRO’s Youtube channel. The live streaming of the launch event will also be available on ISRO Website. Users can also click on the embedded video here to watch the launch of the Aditya-L1 mission.

Aditya-L1 is being launched to study the Sun. It will be placed in a halo orbit around the Lagrange point 1 (L1) of the Sun-Earth system. This point is located around 1.5 million km from the Earth. L1 point gives the advantage to the satellite by enabling it to view sun without any eclipses. According to ISRO, there are total five Lagrange points denoted as L1, L2, L3, L4 and L5.

The spacecraft will be carrying seven payloads. It will take a journey of 125 days, while the satellite is expected to be put into orbit in mid-January. 

IRSO plans on studying the sun as it the nearest star to our Earth. A comprehensive of the sun can help scientists understand about others stars in our Milky Way as well as in various other galaxies.


Affiliate links may be automatically generated – see our ethics statement for details.

For the latest tech news and reviews, follow Gadgets 360 on Twitter, Facebook, and Google News. For the latest videos on gadgets and tech, subscribe to our YouTube channel.


Meta to Offer Paid Versions of Facebook and Instagram in Europe to Avoid Ads: Report



India vs Pakistan Asia Cup 2023: When, Where, How to Watch the Live Streaming



Check out our Latest News and Follow us at Facebook

Original Source

Sun-Observing Spacecraft Sheds Light on the Solar Wind’s Origin

The solar wind is a ubiquitous feature of our solar system. This relentless high-speed flow of charged particles from the sun fills interplanetary space. On Earth, it triggers geomagnetic storms that can disrupt satellites and it causes the dazzling auroras — the northern and southern lights — at high latitudes.

But precisely how the sun generates the solar wind has remained unclear. New observations by the Solar Orbiter spacecraft may provide an answer.

Researchers on Thursday said the spacecraft has detected numerous relatively small jets of charged particles expelled intermittently from the corona — the sun’s outer atmosphere — at supersonic speeds for 20 to 100 seconds.

The jets emanate from structures on the corona called coronal holes where the sun’s magnetic field stretches into space rather than back into the star. They are called “picoflare jets” due to their relatively small size. They arise from areas a few hundred miles wide — tiny when compared to the immense scale of the sun, which has a diameter of 8,65,000 miles (1.4 million km).

“We suggest that these jets could actually be a major source of mass and energy to sustain the solar wind,” said solar physicist Lakshmi Pradeep Chitta of the Max Planck Institute for Solar System Research in Germany, lead author of the research published in the journal Science.

The solar wind consists of plasma — ionized gas, or gas in which the atoms lose their electrons — and is mostly ionized hydrogen.

“Unlike the wind on Earth that circulates the globe, solar wind is ejected outward into interplanetary space,” Chitta said.

“Earth and the other planets in the solar system whiz through the solar wind as they orbit around the sun. Earth’s magnetic field and atmosphere act as shields and protects life by blocking harmful particles and radiation from the sun. But the solar wind continuously propagates outward from the sun and inflates a plasma bubble called the heliosphere that encompasses the planets,” Chitta added.

The heliosphere extends out to about 100 to 120 times further than Earth’s distance to the sun.

The data for the study was obtained last year by one of the three telescopes on an instrument called the Extreme Ultraviolet Imager aboard the Solar Orbiter, a sun-observing probe built by the European Space Agency and the US space agency NASA that was launched in 2020. The Solar Orbiter was about 31 million miles (50 million km) from the sun at the time — about a third of the distance separating the sun and Earth.

“This finding is important as it sheds more light on the physical mechanism of the solar wind generation,” said solar physicist and study co-author Andrei Zhukov of the Royal Observatory of Belgium.

The solar wind’s existence was predicted by American physicist Eugene Parker in the 1950s and was verified in the 1960s.

“Still, the origin of the solar wind remains a longstanding puzzle in astrophysics,” Chitta said. “A key challenge is to identify the dominant physical process that powers the solar wind.”

The Solar Orbiter is discovering new details about the solar wind and is expected to obtain even better data in the coming years using additional instruments and viewing the sun from other angles.

Zhukov said stellar wind is a phenomenon common to most, if not all, stars, though the physical mechanism may differ among various types of stars.

“Our understanding of the sun is much more detailed than the understanding of other stars, due to its proximity and thus the possibility to make more detailed observations,” Zhukov added.

© Thomson Reuters 2023


Affiliate links may be automatically generated – see our ethics statement for details.

Check out our Latest News and Follow us at Facebook

Original Source

Chandrayaan-3 Landing Is Important Step for Exploration: ISRO Chief

After the successful launch of Chandrayaan-3 on GSLV Mark 3 (LVM 3) heavy-lift launch vehicle on Friday, Director of Indian Space Research Organisation (ISRO) S Somanath said that landing is one important step for further exploration. 

“Chandrayaan-3 is a very important step…Landing this time is very important. Unless you land, you cannot take samples, you cannot land human beings, and you cannot create moon bases. So, landing is one important step for further exploration,” said ISRO chief S Somanath.

Chandrayaan-3 is the ISRO’s follow-up attempt after the Chandrayaan-2 mission faced challenges during its soft landing on the lunar surface in 2019 and was eventually deemed to have failed its core mission objectives.

Earlier today, Chandrayaan-3 was launched on GSLV Mark 3 (LVM 3) heavy-lift launch vehicle successfully from the Satish Dhawan Space Centre in Andhra Pradesh’s Sriharikota as per the scheduled launch time.

The journey from Earth to the moon for the spacecraft is estimated to take about a month and the landing is expected on August 23. Upon landing, it will operate for one lunar day, which is approximately 14 Earth days. One day on the Moon is equal to 14 days on Earth.

Chandrayaan-3, India’s third lunar exploration mission, will make India the fourth country after US, China, and Russia, to land its spacecraft on the surface of the moon and demonstrate the country’s abilities for safe and soft landing on the lunar surface.

Chandrayaan-3 will be inserted into the Lunar Transfer Trajectory after the orbit-raising maneuvers. Covering a distance of over 3,00,000 km, it will reach the Moon in the coming weeks. Scientific instruments onboard will study the Moon’s surface and enhance our knowledge.

Chandrayaan-3 is equipped with a lander, a rover and a propulsion module. It weighs around 3,900 kilograms.

Moon serves as a repository of the Earth’s past and a successful lunar mission by India will help enhance life on Earth while also enabling it to explore the rest of the solar system and beyond.


Affiliate links may be automatically generated – see our ethics statement for details.

Check out our Latest News and Follow us at Facebook

Original Source

First Ever View of the Milky Way Seen Through the Lens of Neutrino Particles

Data collected by an observatory in Antarctica has produced our first view of the Milky Way galaxy through the lens of neutrino particles. It’s the first time we have seen our galaxy “painted” with a particle, rather than in different wavelengths of light.

The result, published in Science, provides researchers with a new window on the cosmos. The neutrinos are thought to be produced, in part, by high-energy, charged particles called cosmic rays colliding with other matter. Because of the limits of our detection equipment, there’s much we still don’t know about cosmic rays. Therefore, neutrinos are another way of studying them.

It has been speculated since antiquity that the Milky Way we see arching across the night sky consists of stars like our Sun. In the 18th century, it was recognised to be a flattened slab of stars that we are viewing from within. It is only 100 years since we learnt that the Milky Way is in fact a galaxy, or “island universe”, one among a hundred billion others.

In 1923, the American astronomer Edwin Hubble identified a type of pulsating star called a “Cepheid variable” in what was then known as the Andromeda “nebula” (a giant cloud of dust and gas). Thanks to the prior work of Henrietta Swan Leavitt, this provided a measure of the distance from Earth to Andromeda.

This demonstrated that Andromeda is a far away galaxy like our own, settling a long-running debate and completely transforming our notion of our place in the universe.

Opening windows

Subsequently, as new astronomical windows have opened on to the sky, we have seen our galactic home in many different wavelengths of light –- in radio waves, in various infrared bands, in X-rays and in gamma-rays. Now, we can see our cosmic abode in neutrino particles, which have very low mass and only interact very weakly with other matter – hence their nickname of “ghost particles”.

Neutrinos are emitted from our galaxy when cosmic rays collide with interstellar matter. However, neutrinos are also produced by stars like the Sun, some exploding stars, or supernovas, and probably by most high-energy phenomena that we observe in the universe such as gamma-ray bursts and quasars. Hence, they can provide us an unprecedented view of highly energetic processes in our galaxy – a view that we can’t get from using light alone.

The new breakthrough detection required a rather strange “telescope” that is buried several kilometres deep in the Antarctic ice cap, under the South Pole. The IceCube Neutrino Observatory uses a gigatonne of the ultra-transparent ice under huge pressures to detect a form of energy called Cherenkov radiation.

This faint radiation is emitted by charged particles, which, in ice, can travel faster than light (but not in a vacuum). The particles are created by incoming neutrinos, which come from cosmic ray collisions in the galaxy, hitting the atoms in the ice.

Cosmic rays are mainly proton particles (these make up the atomic nucleus along with neutrons), together with a few heavy nuclei and electrons. About a century ago, these were discovered to be raining down on the Earth uniformly from all directions. We do not yet definitively know all their sources, as their travel directions are scrambled by magnetic fields that exist in the space between stars.

Deep in the ice

Neutrinos can act as unique tracers of cosmic ray interactions deep in the Milky Way. However, the ghostly particles are also generated when cosmic rays hit the Earth’s atmosphere. So the researchers using the IceCube data needed a way to distinguish between the neutrinos of “astrophysical” origin – those originating from extraterrestrial sources – and those created from cosmic ray collisions within our atmosphere.

The researchers focused on a type of neutrino interaction in the ice called a cascade. These result in roughly spherical showers of light and give the researchers a better level of sensitivity to the astrophysical neutrinos from the Milky Way. This is because a cascade provides a better measurement of a neutrino’s energy than other types of interactions, even though they they are harder to reconstruct.

Analysis of ten years of IceCube data using sophisticated machine learning techniques yielded nearly 60,000 neutrino events with an energy above 500 gigaelectronvolts (GeV). Of these, only about 7% were of astrophysical origin, with the rest being due to the “background” source of neutrinos that are generated in the Earth’s atmosphere.

The hypothesis that all the neutrino events could be due to cosmic rays hitting the Earth’s atmosphere was definitively rejected at a level of statistical significance known as 4.5 sigma. Put another way, our result has only about a 1 in 150,000 chance of being a fluke.

This falls a little short of the conventional 5 sigma standard for claiming a discovery in particle physics. However, such emission from the Milky Way is expected on sound astrophysical grounds.

With the upcoming enlargement of the experiment – IceCube-Gen2 will be ten times bigger – we will acquire many more neutrino events and the current blurry picture will turn into a detailed view of our galaxy, one that we have never had before.


Affiliate links may be automatically generated – see our ethics statement for details.

Check out our Latest News and Follow us at Facebook

Original Source

Space Travel Messes With the Human Brain, Reveals New NASA-Funded Study

Space can be an unfriendly place for the human body, with microgravity conditions and other factors tampering with our physiology, from head to toe — head, of course, being a primary concern.

A new NASA-funded study provides a deeper understanding of the issue. Researchers said on Thursday that astronauts who traveled on the International Space Station (ISS) or NASA space shuttles on missions lasting at least six months experienced significant expansion of the cerebral ventricles — spaces in the middle of the brain containing cerebrospinal fluid.

This colorless and watery fluid flows in and around the brain and spinal cord. It cushions the brain to help protect against sudden impact and removes waste products.

Based on brain scans of 30 astronauts, the researchers found that it took three years for the ventricles to fully recover after such journeys, suggesting that an interval of at least that duration would be advisable between longer space missions.

“If the ventricles don’t have sufficient time to recover between back-to-back missions, this may impact the brain’s ability to cope with fluid shifts in microgravity. For example, if the ventricles are already enlarged from a previous mission, they may be less compliant and/or have less space to expand and accommodate fluid shifts during the next mission,” said University of Florida neuroscientist Heather McGregor, lead author of the study published in the journal Scientific Reports.

Age-related ventricular enlargement — caused not by microgravity but by brain atrophy — can be associated with cognitive decline.

“The impact of ventricular expansion in space travelers is not currently known. More long-term health follow-up is needed. This ventricular expansion likely compresses the surrounding brain tissue,” University of Florida applied physiology and kinesiology professor and study senior author Rachael Seidler said.

The absence of Earth‘s gravity modifies the brain.

“This seems to be a mechanical effect,” Seidler said. “On Earth, our vascular systems have valves that prevent all of our fluids from pooling at our feet due to gravity. In microgravity, the opposite occurs — fluids shift toward the head. This headward fluid shift likely results in ventricular expansion, and the brain sits higher within the skull.”

The study involved 23 male and seven female astronauts — average age around 47 — from the US, Canadian and European space agencies. Eight traveled on space shuttle missions of about two weeks. Eighteen were on ISS missions of about six months and four on ISS missions of about a year.

Little to no ventricular volume change occurred in astronauts after short missions. Enlargement occurred in astronauts after missions of six months or longer, though there was no difference in those who flew for six months compared to those who did so for a year.

“This suggests that the majority of ventricle enlargement happens during the first six months in space, then begins to taper off around the one-year mark,” McGregor said.

The fact that enlargement did not worsen after six months could be good news for future Mars missions on which astronauts may spend two years in microgravity during the journey.

“This preliminary finding is promising for astronaut brain health during long-duration missions, but it’s still important that we examine MRI data from a larger group of astronauts and following even longer missions,” McGregor said.

The absence of enlargement following short flights was good news for people who may consider short space tourism jaunts, Seidler added, as that industry develops.

Microgravity conditions also cause other physiological effects due to the reduced physical load on the human body. These include bone and muscle atrophy, cardiovascular changes, issues with the balance system in the inner ear and a syndrome involving the eyes. Elevated cancer risk from the greater exposure to solar radiation that astronauts may encounter the further they travel from Earth is another concern.

© Thomson Reuters 2023


Apple’s annual developer conference is just around the corner. From the company’s first mixed reality headset to new software updates, we discuss all the things we’re looking forward to seeing at WWDC 2023 on Orbital, the Gadgets 360 podcast. Orbital is available on Spotify, Gaana, JioSaavn, Google Podcasts, Apple Podcasts, Amazon Music and wherever you get your podcasts.
Affiliate links may be automatically generated – see our ethics statement for details.

Check out our Latest News and Follow us at Facebook

Original Source

NASA’s Hubble Telescope Spots Runaway Supermassive Black Hole Leaving Behind Trail of Newborn Stars

A supermassive black hole, weighing as much as 20 million Suns, has left behind a 2,00,000-light-year-long condensed trail of newborn stars, twice the diameter of the Milky Way galaxy, in its wake, according to the National Aeronautics and Space Administration (NASA), US.

Captured accidentally by NASA‘s Hubble Space Telescope, the black hole was seen racing through the intergalactic space so fast that, within our solar system, it could travel from Earth to the Moon in 14 minutes.

“We think we’re seeing a wake behind the black hole where the gas cools and is able to form stars. So, we’re looking at star formation trailing the black hole,” said Pieter van Dokkum of Yale University in New Haven, Connecticut, US.

“What we’re seeing is the aftermath. Like the wake behind a ship, we’re seeing the wake behind the black hole,” said van Dokkum.

The researchers have published their paper in The Astrophysical Journal Letters.

They said that the black hole lies at one end of the column, at the other end of which lies its parent galaxy. They think that the gas is being ‘shocked’ and heated from the motion of the black hole hitting the gas, or it could be radiation from an accretion disk around the black hole.

“This is pure serendipity that we stumbled across it,” van Dokkum added. He was looking for globular star clusters in a nearby dwarf galaxy.

“I was just scanning through the Hubble image and then I noticed that we have a little streak. I immediately thought, ‘oh, a cosmic ray hitting the camera detector and causing a linear imaging artifact.’ When we eliminated cosmic rays we realized it was still there. It didn’t look like anything we’ve seen before,” said van Dokkum.

Van Dokkum and his team followed up the sight with spectroscopy with the W M Keck Observatories in Hawaii. The star trail being “quite astonishing, very, very bright and very unusual” made them conclude that they were looking at the aftermath of a black hole flying through a halo of gas surrounding the host galaxy.

Astronomers suspect this phenomenon to likely be the result of multiple collisions of supermassive black holes, the first two having perhaps merged 50 million years ago. Brought together closer at their centres, they whirled around each other as a binary black hole, they said.

Then came another galaxy with its own supermassive black hole, mixing up the three to form a chaotic and an unstable configuration. One of the black holes robbed momentum from the other two black holes and got thrown out of the host galaxy, they said.

Following this, the remaining binary system of black holes shot off in the opposite direction, they said.

There is a feature seen on the opposite side of the host galaxy that might be the runaway binary black hole. Circumstantial evidence for this is that there is no sign of an active black hole remaining at the galaxy’s core, they said.

The next step, they said, would be to do follow-up observations with NASA’s James Webb Space Telescope and the Chandra X-ray Observatory to confirm the black hole explanation.


Smartphone companies have launched many compelling devices over the first quarter of 2023. What are some of the best phones launched in 2023 you can buy today? We discuss this on Orbital, the Gadgets 360 podcast. Orbital is available on Spotify, Gaana, JioSaavn, Google Podcasts, Apple Podcasts, Amazon Music and wherever you get your podcasts.
Affiliate links may be automatically generated – see our ethics statement for details.

Check out our Latest News and Follow us at Facebook

Original Source

Asteroid Discovery Suggests Ingredients for Life on Earth Came From Space

Two organic compounds essential for living organisms have been found in samples retrieved from the asteroid Ryugu, buttressing the notion that some ingredients crucial for the advent of life arrived on Earth aboard rocks from space billions of years ago.

Scientists said on Tuesday they detected uracil and niacin in rocks obtained by the Japanese Space Agency’s Hayabusa2 spacecraft from two sites on Ryugu in 2019. Uracil is one of the chemical building blocks for RNA, a molecule carrying directions for building and operating living organisms. Niacin, also called Vitamin B3 or nicotinic acid, is vital for their metabolism.

The Ryugu samples, which looked like dark-gray rubble, were transported 155 million miles (250 million km) back to Earth and returned to our planet’s surface in a sealed capsule that landed in 2020 in Australia’s remote outback for analysis in Japan.

Scientists long have pondered about the conditions necessary for life to arise after Earth formed about 4.5 billion years ago. The new findings fit well with the hypothesis that bodies like comets, asteroids and meteorites that bombarded early Earth seeded the young planet with compounds that helped pave the way for the first microbes.

Scientists previously detected key organic molecules in carbon-rich meteorites found on Earth. But there was the question of whether these space rocks had been contaminated by exposure to the Earth’s environment after landing.

“Our key finding is that uracil and niacin, both of which are of biological significance, are indeed present in extraterrestrial environments and they may have been provided to the early Earth as a component of asteroids and meteorites. We suspect they had a role in prebiotic evolution on Earth and possibly for the emergence of first life,” said astrochemist Yasuhiro Oba of Hokkaido University in Japan, lead author of the research published in the journal Nature Communications.

“These molecules on Ryugu were recovered in a pristine extraterrestrial setting,” Oba said. “It was directly sampled on the asteroid Ryugu and returned to Earth, and finally to laboratories without any contact with terrestrial contaminants.”

RNA, short for ribonucleic acid, would not be possible without uracil. RNA, a molecule present in all living cells, is vital in coding, regulation and activity of genes. RNA has structural similarities to DNA, a molecule that carries an organism’s genetic blueprint.

Niacin is important in underpinning metabolism and can help produce the “energy” that powers living organisms.

The researchers extracted uracil, niacin and some other organic compounds in the Ryugu samples by soaking the material in hot water and then performing analyses called liquid chromatography and high-resolution mass spectrometry.

Organic astrochemist and study co-author Yoshinori Takano of the Japan Agency for Marine-Earth Science and Technology (JAMSTEC) said he is now looking forward to the results of analyses on samples being returned to Earth in September from another asteroid. The U.S. space agency NASA during its OSIRIS-REx mission collected samples in 2020 from the asteroid Bennu.

Oba said uracil and niacin were found at both landing sites on Ryugu, which is about a half-mile (900 meters) in diameter and is classified as a near-Earth asteroid. The concentrations of the compounds were higher at one of the sites than the other.

The sample from the site with the lower concentrations was derived from surface material more susceptible to degradation induced by energetic particles darting through space, Oba said. The sample from the other site was mainly derived from subsurface material more protected from degradation, Oba added.

Asteroids are rocky primordial bodies that formed in the early solar system. The researchers suggest that the organic compounds found on Ryugu may have been formed with the help of chemical reactions caused by starlight in icy materials residing in interstellar space.

© Thomson Reuters 2023


After facing headwinds in India last year, Xiaomi is all set to take on the competition in 2023. What are the company’s plans for its wide product portfolio and its Make in India commitment in the country? We discuss this and more on Orbital, the Gadgets 360 podcast. Orbital is available on Spotify, Gaana, JioSaavn, Google Podcasts, Apple Podcasts, Amazon Music and wherever you get your podcasts.

 

Affiliate links may be automatically generated – see our ethics statement for details.

Check out our Latest News and Follow us at Facebook

Original Source

Exit mobile version