NASA’s Hubble Telescope Spots Runaway Supermassive Black Hole Leaving Behind Trail of Newborn Stars

A supermassive black hole, weighing as much as 20 million Suns, has left behind a 2,00,000-light-year-long condensed trail of newborn stars, twice the diameter of the Milky Way galaxy, in its wake, according to the National Aeronautics and Space Administration (NASA), US.

Captured accidentally by NASA‘s Hubble Space Telescope, the black hole was seen racing through the intergalactic space so fast that, within our solar system, it could travel from Earth to the Moon in 14 minutes.

“We think we’re seeing a wake behind the black hole where the gas cools and is able to form stars. So, we’re looking at star formation trailing the black hole,” said Pieter van Dokkum of Yale University in New Haven, Connecticut, US.

“What we’re seeing is the aftermath. Like the wake behind a ship, we’re seeing the wake behind the black hole,” said van Dokkum.

The researchers have published their paper in The Astrophysical Journal Letters.

They said that the black hole lies at one end of the column, at the other end of which lies its parent galaxy. They think that the gas is being ‘shocked’ and heated from the motion of the black hole hitting the gas, or it could be radiation from an accretion disk around the black hole.

“This is pure serendipity that we stumbled across it,” van Dokkum added. He was looking for globular star clusters in a nearby dwarf galaxy.

“I was just scanning through the Hubble image and then I noticed that we have a little streak. I immediately thought, ‘oh, a cosmic ray hitting the camera detector and causing a linear imaging artifact.’ When we eliminated cosmic rays we realized it was still there. It didn’t look like anything we’ve seen before,” said van Dokkum.

Van Dokkum and his team followed up the sight with spectroscopy with the W M Keck Observatories in Hawaii. The star trail being “quite astonishing, very, very bright and very unusual” made them conclude that they were looking at the aftermath of a black hole flying through a halo of gas surrounding the host galaxy.

Astronomers suspect this phenomenon to likely be the result of multiple collisions of supermassive black holes, the first two having perhaps merged 50 million years ago. Brought together closer at their centres, they whirled around each other as a binary black hole, they said.

Then came another galaxy with its own supermassive black hole, mixing up the three to form a chaotic and an unstable configuration. One of the black holes robbed momentum from the other two black holes and got thrown out of the host galaxy, they said.

Following this, the remaining binary system of black holes shot off in the opposite direction, they said.

There is a feature seen on the opposite side of the host galaxy that might be the runaway binary black hole. Circumstantial evidence for this is that there is no sign of an active black hole remaining at the galaxy’s core, they said.

The next step, they said, would be to do follow-up observations with NASA’s James Webb Space Telescope and the Chandra X-ray Observatory to confirm the black hole explanation.


Smartphone companies have launched many compelling devices over the first quarter of 2023. What are some of the best phones launched in 2023 you can buy today? We discuss this on Orbital, the Gadgets 360 podcast. Orbital is available on Spotify, Gaana, JioSaavn, Google Podcasts, Apple Podcasts, Amazon Music and wherever you get your podcasts.
Affiliate links may be automatically generated – see our ethics statement for details.

Check out our Latest News and Follow us at Facebook

Original Source

Galaxies Spotted by Webb Space Telescope Rewrite Prior Understanding of Universe

Observations by NASA’s James Webb Space Telescope are upending the understanding of the early universe, indicating the presence of large and mature but remarkably compact galaxies teeming with stars far sooner than scientists had considered possible.

Astronomers said data obtained by the telescope reveals what appear to be six big galaxies as mature as our Milky Way existing about 540 million to 770 million years after the explosive Big Bang that kicked off the universe 13.8 billion years ago. The universe was roughly 3 percent of its current age at the time.

These galaxies, one of which appears to have a mass rivaling our Milky Way but 30 times more densely packed, seem to differ in fundamental ways from those populating the universe today.

“Oh, they are radically different — truly bizarre creatures,” said astrophysicist Ivo Labbe of Swinburne University of Technology in Australia, lead author of the study published in the journal Nature. “If the Milky Way were a regular-sized average adult, say about 5 feet, 9 inch (1.75 meters) and 160 pounds (70 kg), these would be 1-year-old babies weighing about the same but standing just under 3 inches (7 cm) tall. The early universe is a freak show.”

Webb was launched in 2021 and began collecting data last year. The findings were based upon the first dataset released by NASA last July from Webb, a telescope boasting infrared-sensing instruments able to detect light from the most ancient stars and galaxies.

“This is an astounding discovery and unexpected. We thought that galaxies form over much longer periods of time,” said Penn State astrophysicist and study co-author Joel Leja. “No one expected to find these. These galaxy candidates are simply too evolved for our expectations. They seem to have evolved faster than allowed by our standard models.”

Leja called them galaxy candidates because further observations are needed to confirm that they all are galaxies rather than some other source of light like a supermassive black hole.

“The exciting part is that even if only some turn out to be massive galaxies, these things are so massive that they alone would upend our measurements of the total mass in stars at this time. It would suggest 10 to 100 times more mass in stars existing at this epoch than expected and would imply that galaxies form way, way faster in the universe than anyone thought.”

The galaxies appear to contain mass equivalent to 10 billion to 100 billion times that of our sun. The latter figure is similar to the Milky Way’s mass.

The journey to galaxy formation following the Big Bang apparently hinged on mysterious material called dark matter that is invisible to us but is known to exist because of the gravitational influence it exerts on normal matter.

“The leading theory is that an ocean of dark matter filled the early universe after the Big Bang,” Labbe said.

“This dark matter — we don’t know what it is actually is — started out really smooth, with only the tiniest of ripples. These ripples grew over time due to gravity and eventually the dark matter started to collect in concentrated clumps, dragging hydrogen gas along for the ride. It’s that hydrogen gas that will eventually turn into stars. Clumps of dark matter, gas and stars is what we call a galaxy,” Labbe added.

Astronomers suspect the first stars began forming 100 million to 200 million years after the Big Bang, each perhaps 1,000 more massive than our sun but much shorter-lived.

“Their explosion set off the chain of events that formed subsequent generations of stars,” Labbe said.

“Webb continuous to amaze and surprise us,” Labbe added. “So yes, the early universe was a lot richer and lot more diverse — monsters and dragons. And the curtain is still being lifted.”

© Thomson Reuters 2023


Samsung’s Galaxy S23 series of smartphones was launched earlier this week and the South Korean firm’s high-end handsets have seen a few upgrades across all three models. What about the increase in pricing? We discuss this and more on Orbital, the Gadgets 360 podcast. Orbital is available on Spotify, Gaana, JioSaavn, Google Podcasts, Apple Podcasts, Amazon Music and wherever you get your podcasts.

 

Affiliate links may be automatically generated – see our ethics statement for details.

For details of the latest launches and news from Samsung, Xiaomi, Realme, OnePlus, Oppo and other companies at the Mobile World Congress in Barcelona, visit our MWC 2023 hub.

Check out our Latest News and Follow us at Facebook

Original Source

Astronomers Discover Milky Way Galaxy’s Most-Distant Stars

Astronomers have detected in the stellar halo that represents the Milky Way’s outer limits a group of stars more distant from Earth than any known within our own galaxy — almost halfway to a neighboring galaxy.

The researchers said these 208 stars inhabit the most remote reaches of the Milky Way‘s halo, a spherical stellar cloud dominated by the mysterious invisible substance called dark matter that makes itself known only through its gravitational influence. The furthest of them is 1.08 million light years from Earth. A light year is the distance light travels in a year, 5.9 trillion miles (9.5 trillion km).

These stars, spotted using the Canada-France-Hawaii Telescope on Hawaii’s Mauna Kea mountain, are part of a category of stars called RR Lyrae that are relatively low mass and typically have low abundances of elements heavier than hydrogen and helium. The most distant one appears to have a mass about 70 percent that of our sun. No other Milky Way stars have been confidently measured farther away than these.

The stars that populate the outskirts of the galactic halo can be viewed as stellar orphans, probably originating in smaller galaxies that later collided with the larger Milky Way.

“Our interpretation about the origin of these distant stars is that they are most likely born in the halos of dwarf galaxies and star clusters which were later merged – or more straightforwardly, cannibalised — by the Milky Way,” said Yuting Feng, an astronomy doctoral student at the University of California, Santa Cruz, who led the study, presented this week at an American Astronomical Society meeting in Seattle.

“Their host galaxies have been gravitationally shredded and digested, but these stars are left at that large distance as debris of the merger event,” Feng added.

The Milky Way has grown over time through such calamities.

“The larger galaxy grows by eating smaller galaxies — by eating its own kind,” said study co-author Raja GuhaThakurta, UC Santa Cruz’s chair of astronomy and astrophysics.

Containing an inner and outer layer, the Milky Way’s halo is vastly larger than the galaxy’s main disk and central bulge that are teeming with stars. The galaxy, with a supermassive black hole at its center about 26,000 light years from Earth, contains perhaps 100 billion–400 billion stars including our sun, which resides in one of the four primary spiral arms that make up the Milky Way’s disk. The halo contains about 5 percent of the galaxy’s stars.

Dark matter, which dominates the halo, makes up most of the universe’s mass and is thought to be responsible for its basic structure, with its gravity influencing visible matter to come together and form stars and galaxies.

The halo’s remote outer edge is a poorly understood region of the galaxy. These newly identified stars are almost half the distance to the Milky Way’s neighboring Andromeda galaxy.

“We can see that the suburbs of the Andromeda halo and the Milky Way halo are really extended – and are almost ‘back-to-back,'” Feng said.

The search for life beyond the Earth focuses on rocky planets akin to Earth orbiting in what is called the “habitable zone” around stars. More than 5,000 planets beyond our solar system, called exoplanets, already have been discovered.

“We don’t know for sure, but each of these outer halo stars should be about as likely to have planets orbiting them as the sun and other sun-like stars in the Milky Way,” GuhaThakurta said.

© Thomson Reuters 2023

 


Affiliate links may be automatically generated – see our ethics statement for details.

Check out our Latest News and Follow us at Facebook

Original Source

ESO Releases Image of Aftermath of Large Star’s Explosive Death

The aftermath of a large star’s explosive death is seen in an image released on Monday by the European Southern Observatory, showing immense filaments of brightly shining gas that was blasted into space during the supernova.

Before exploding at the end of its life cycle, the star is believed to have had a mass at least eight times greater than our sun. It was located in our Milky Way galaxy about 800 light years from Earth in the direction of the constellation Vela. A light year is the distance light travels in a year, 5.9 trillion miles (9.5 trillion km).

The eerie image shows clouds of gas that look like pink and orange tendrils in the filters used by the astronomers, covering an expanse roughly 600 times larger than our solar system.

“The filamentary structure is the gas that was ejected from the supernova explosion, which created this nebula. We see the inside material of a star as it expands into space. When there are denser parts, some of the supernova material shocks with the surrounding gas and creates some of the filamentary structure,” said Bruno Leibundgut, an astronomer affiliated with the European Southern Observatory (ESO).

The image shows the supernova remnants about 11,000 years after the explosion, Leibundgut said.

“Most of the material that shines is due to hydrogen atoms that are excited. The beauty of such images is that we can directly see what material was inside a star,” Leibundgut added. “The material that has been built up over many millions of years is now exposed and will cool down over millions of years until it eventually will form new stars. These supernovae produce many elements — calcium or iron — which we carry in our own bodies. This is a spectacular part of the path in the evolution of stars.”

The star itself has been reduced in the aftermath of the supernova to an incredibly dense spinning object called a pulsar. A pulsar is a type of neutron star — one of the most compact celestial objects known to exist. This one rotates 10 times per second.

The image represented a mosaic of observations taken with a wide-field camera called OmegaCAM at the VLT Survey Telescope, hosted at the ESO’s Paranal Observatory in Chile. The data for the image was collected from 2013 to 2016, the ESO said.

© Thomson Reuters 2022


Apple launched the iPad Pro (2022) and the iPad (2022) alongside the new Apple TV this week. We discuss the company’s latest products, along with our review of the iPhone 14 Pro on Orbital, the Gadgets 360 podcast. Orbital is available on Spotify, Gaana, JioSaavn, Google Podcasts, Apple Podcasts, Amazon Music and wherever you get your podcasts.
Affiliate links may be automatically generated – see our ethics statement for details.

Check out our Latest News and Follow us at Facebook

Original Source

Astronomers Spot Hot Gas Bubble Spinning Clockwise Around Milky Way Black Hole

Astronomers said Thursday they have spotted a hot bubble of gas spinning clockwise around the black hole at the centre of our galaxy at “mind blowing” speeds.

The detection of the bubble, which only survived for a few hours, is hoped to provide insight into how these invisible, insatiable, galactic monsters work.

The supermassive black hole Sagittarius A* lurks in the middle of the Milky Way some 27,000 light years from Earth, and its immense pull gives our home galaxy its characteristic swirl.

The first-ever image of Sagittarius A* was revealed in May by the Event Horizon Telescope Collaboration, which links radio dishes around the world aiming to detect light as it disappears into the maw of black holes.

One of those dishes, the ALMA radio telescope in Chile’s Andes mountains, picked up something “really puzzling” in the Sagittarius A* data, said Maciek Wielgus, an astrophysicist at Germany’s Max Planck Institute for Radio Astronomy.

Just minutes before ALMA’s radio data collection began, the Chandra Space Telescope observed a “huge spike” in X-rays, Wielgus told AFP.

This burst of energy, thought to be similar to solar flares on the Sun, sent a hot bubble of gas swirling around the black hole, according to a new study published in the journal Astronomy and Astrophysics.

The gas bubble, also known as a hot spot, had an orbit similar to Mercury‘s trip around the Sun, the study’s lead author Wielgus said.

But while it takes Mercury 88 days to make that trip, the bubble did it in just 70 minutes. That means it travelled at around 30 percent of the speed of light.

“So it’s an absolutely, ridiculously fast-spinning bubble,” Wielgus said, calling it “mind blowing”.

A MAD theory

The scientists were able to track the bubble through their data for around one and half hours – it was unlikely to have survived more than a couple of orbits before being destroyed.

Wielgus said the observation supported a theory known as MAD. “MAD like crazy, but also MAD like magnetically arrested discs,” he said.

The phenomenon is thought to happen when there is such a strong magnetic field at the mouth of a black hole that it stops material from being sucked inside.

But the matter keeps piling up, building up to a “flux eruption”, Wielgus said, which snaps the magnetic fields and causes a burst of energy.

By learning how these magnetic fields work, scientists hope to build a model of the forces that control black holes, which remain shrouded in mystery.

Magnetic fields could also help indicate how fast black holes spin – which could be particularly interesting for Sagittarius A*.

While Sagittarius A* is four million times the mass of our Sun, it only shines with the power of about 100 suns, “which is extremely unimpressive for a supermassive black hole, Wielgus said.

“It’s the weakest supermassive black hole that we’ve seen in the universe – we’ve only seen it because it is very close to us.”

But it is probably a good thing that our galaxy has a “starving black hole” at its centre, Wielgus said.

“Living next to a quasar,” which can shine with the power of billions of suns, “would be a terrible thing,” he added.


Buying an affordable 5G smartphone today usually means you will end up paying a “5G tax”. What does that mean for those looking to get access to 5G networks as soon as they launch? Find out on this week’s episode. Orbital is available on Spotify, Gaana, JioSaavn, Google Podcasts, Apple Podcasts, Amazon Music and wherever you get your podcasts.

Check out our Latest News and Follow us at Facebook

Original Source

Fastest-Growing Black Hole in the Universe, 7,000 Times Brighter Than the Entire Milky Way

Scientists have discovered the fastest-growing black hole in the last 9 billion years. The black hole, which sends multi-wavelength light blazing across the universe, shines 7,000 times brighter than the entire Milky Way galaxy. Due to this, it is also known as a quasar. For those who don’t know, quasars are one of the brightest objects in the universe. When supermassive black holes emit matter at a high rate, the end result is a quasar. Scientists, who have analysed its properties, have named it SMSS J114447.77-430859.3 (J1144 for short).

As per the analysis, light from the black hole has travelled almost 7 billion years to reach Earth. The mass of this supermassive black hole is around 2.6 billion times the mass of the Sun. In fact, material equivalent to the mass of Earth falls into this black hole every second.

The team’s research has been submitted to the Publications of the Astronomical Society of Australia. We would like to add that this black hole went unnoticed by scientists to date. As the position is concerned, it sits 18 degrees above the galactic plane. Whereas, in the previous surveys, it was found that the position is 20 degrees above the Milky Way disk.

Astronomer Christopher Onken from the Australian National University said, “Astronomers have been hunting for objects like this for more than 50 years. They have found thousands of fainter ones, but this astonishingly bright one had slipped through unnoticed.”

According to Onken and his team, this black hole is a “very large, unexpected needle in the haystack”.

Professor Christian Wolf, who is a co-author, said, “We are fairly confident this record will not be broken. We have essentially run out of the sky where objects like this could be hiding.”

As a result of this discovery, scientists are more enthusiastic to hunt down other bright quasars. Right now, there are 80 new quasars as confirmed by the team of scientists.


Check out our Latest News and Follow us at Facebook

Original Source

Astronomers May Have Discovered a Black Hole Candidate Through Gravitational Microlensing

A team of astronomers from the University of California, Berkeley, has discovered what appears to be a free-floating black hole for the first time by observing the brightening of a more distant star as its light was distorted by the object’s strong gravitational field — a phenomenon known as gravitational microlensing. The unseen compact object’s mass is estimated to be between 1.6 and 4.4 times that of the Sun, according to the astronomers. They also warn that the object could be a neutron star rather than a black hole because astronomers believe the relic of a dead star must be heavier than 2.2 solar masses in order to collapse into a black hole.

[Neutron stars](https://gadgets360.com/tags/neutron-stars) are dense, compact objects. But their gravity is counterbalanced by internal neutron pressure, preventing them from compressing further into [black holes](https://gadgets360.com/tags/black-hole).

Jessica Lu, a UC Berkeley associate professor of astronomy, said that this was the first free-floating black hole or neutron star detected with gravitational microlensing. Lu added that they can explore and weigh these small objects using microlensing, and believes that they have opened a new window into these black objects that couldn’t be viewed in any other manner.

Casey Lam, a graduate student, was also involved in the research.

The Astrophysical Journal Letters has accepted the analysis for publication.

A competing study from Baltimore’s Space Telescope Science Institute (STScI) investigated the identical microlensing event and argues that the compact object’s mass is closer to 7.1 solar masses, indicating that it is unmistakably a black hole.

While surveys like these detect about 2,000 stars per year that have been magnified by microlensing, the addition of astrometric data allowed the two teams to determine the compact object’s mass and distance from [Earth](https://gadgets360.com/tags/earth).

According to the UC Berkeley-led research, it is estimated to lie between 2,280 and 6,260 light-years away. The STScI group predicted it to be 5,153 light-years away.

Lu and Lam got interested in the object in 2020 after the STScI team initially decided that five microlensing events seen by [Hubble](https://gadgets360.com/tags/hubble) — all of which lasted more than 100 days and thus could have been black holes — might not be generated by compact objects after all.

When Lam examined the photometry and astrometry for the five microlensing events, she was surprised to discover that one of them, OB110462, showed compact object properties. The lensing object appeared black, indicating that it was not a [star](https://gadgets360.com/tags/star). The stellar brightening lasted around 300 days, and the background star’s position was distorted for the same amount of time.

According to Lam, the length of the lensing session was the most important factor. She established in 2020 that the best method for finding black hole microlenses was to look for very lengthy events. Black holes, she claims, account for only 1 percent of all detectable microlensing events, so looking at them all would be like looking for a needle in a haystack. According to Lam, approximately 40 percent of microlensing events lasting more than 120 days are likely to be black holes.

The gravitational influence of OB110462 on the light of the background star, according to Lu, lasted an unusually long time. The star shone brightly for almost a year until it peaked in 2011, then dimmed for a year before returning to normal.

Both teams computed the velocity of the super-compact lensing object as well. Lu and Lam discovered a rather modest speed of less than 30 km/s. The STScI team observed a 45-kilometer-per-second velocity, which they interpreted as the result of the purported black hole receiving an extra kick from the supernova that formed it.

Check out our Latest News and Follow us at Facebook

Original Source

Scientists Explore if the Mysterious ‘Wow!’ Signal in 1977 Come From a Sun-Like Star 1,800 Light-Years Away

On August 15, 1977, a mysterious ‘Wow!’ signal had briefly blared through a radio telescope that lasted for 72 seconds. Now, almost half a century later, researchers may have discovered the source of the alleged alien broadcast. A study recently published on May 6 indicates that the signal likely came from a Sun-like star located 1,800 light-years away from the Earth, in the constellation Sagittarius. The search for extraterrestrial intelligence (SETI), which has been looking for intelligent lifeforms in the universe, is still studying the signal.

Since the middle of the 20th century, SETI has been looking for possible transmissions from faraway technological entities. Alberto Caballero, an amateur scientist, found the ‘Wow!’ signal’s location. His findings were published in the May edition of the International Journal of Astrobiology.

Caballero said that he had found “specifically one Sun-like star”, and mentioned that the object named 2MASS 19281982-2640123 was 1,800 light-years away.

According to Caballero, the star was too far away for humans to send a signal in response (since it would take 1,800 years for the signal to arrive even if it travelled at the speed of light). But the localised area of space also contains other possible candidates.

According to a report by its discoverer, astronomer Jerry Ehman, the ‘Wow!’ signal appeared during a SETI search at Ohio State University’s Big Ear telescope and was extraordinarily strong but very fleeting, lasting only 1 minute and 12 seconds. Ehman had scribbled ‘Wow!’ on the page after seeing a printout of a strange signal, giving the event its name.

Ehman had written in his report that since hydrogen was the most abundant element in the universe, it stands to reason that an intelligent civilisation within the Milky Way galaxy, trying to seek attention.

A report in the American Astronomical Society stated that researchers have regularly searched for follow-ups originating from the same location, but they have come up empty-handed.

Caballero added that ‘Wow!’ signal was most likely caused by a natural event rather than aliens. However, astronomers have ruled out a few possibilities such as a passing comet.

 

 


Check out our Latest News and Follow us at Facebook

Original Source

NASA’s James Webb Space Telescope Almost Set to Go for Solar System Exploration, Find Universe’s Deepest Secrets

Our wait seems to be nearing its end as NASA’s James Webb Space Telescope is in its final stages of completion before being launched to explore the solar system. The Webb team is undertaking the final stages of commissioning the essential instruments aboard the observatory. Technical operations have also begun to test these instruments. The team is running a final test to check how precisely the Webb telescope can find distant stars and galaxies and acquire their images and spectra. The observatory is also equipped to keep a check on satellites, asteroids, and comets in the solar system.

The task of the Webb telescope is to lock its observing tools on the objects that are swiftly moving against a background of stars of our Milky Way galaxy. In order to check the observatory’s capabilities to undertake such complex tasks, the team ran the first test to track a moving object and Webb succeeded in the test. Scientists, now, aim to test different objects, which will move at varying speeds, to test the precision of Webb’s instruments.

Heidi Hammel, Webb’s interdisciplinary scientist for solar system observations, shares, “Webb can detect the faint light of the earliest galaxies, but my team will be observing much closer to home. They will use Webb to unravel some of the mysteries that abound in our own solar system.”

But, isn’t Webb meant to observe the deepest corners of outer space? Do we really need such a powerful tool to study our solar system? The answers lie in a statement by Ms Hammel, “We planetary scientists use telescopes to complement our in situ missions (missions that we send to fly by, orbit, or land on objects). One example of this is how Hubble was used to find the post-Pluto target for the New Horizons mission, Arrokoth. We also use telescopes when we don’t have in situ missions planned — like for the distant ice giants Uranus and Neptune or to make measurements of large populations of objects, such as hundreds of asteroids or Kuiper Belt Objects (small ice worlds beyond the orbits of Neptune, including Pluto) since we can only send missions to just a few of these.”

“Our solar system has far more mysteries than my team had time to solve. Our programs will observe objects across the solar system,” said Hammel.

Her team is planning to observe the giant planets, Saturn‘s rings, the atmosphere of Mars and Kuiper Belt Objects, among other mysteries.


Check out our Latest News and Follow us at Facebook

Original Source

MIT Researchers May Have Detected Rare ‘Black Widow’ System 3,000 Light-Years From Earth

The universe is full of enigma and mysteries. Millions of objects move around undetected. In fact, there’s no dearth of such objects lurking in our very own Milky Way galaxy. We know very little of them, yet they continue to impact our lives in a number of ways. While the effort to study these objects continues, astronomers have detected a new object, roughly 3,000-4,000 light-years away, giving out mysterious flashes of light. They suspect that this object could be the elusive “black widow” star, a rapidly spinning pulsar, or neutron star, that thrives by slowly consuming its smaller companion star.

Black widow stars are rare since astronomers have been able to detect only about two dozen of them in the Milky Way. But researchers from the Massachusetts Institute of Technology (MIT), who found this enigmatic object, believe this could be the weirdest and most bizarre black widow pulsars of them all. They have named the newest candidate ZTF J1406+1222.

The researchers said the new candidate has the shortest orbital period yet identified, with the pulsar and companion star circling each other every 62 minutes. The system is unique because it appears to host a third star that orbits around the two inner stars every 10,000 years, they added in a statement on MIT’s website.

This three-star system is raising questions about how it would have formed. The MIT researchers have attempted a theory for its origin: they feel the system likely arose from a dense constellation of old stars known as a globular cluster. This particular system may have drifted away from the cluster towards the centre of the Milky Way.

“This system has probably been floating around in the Milky Way for longer than the sun has been around,” said lead researcher and physicist Kevin Burdge from MIT’s Department of Physics.

Their study has been published in the journal Nature. It details how the researchers used a new approach to detect this triple-star system. Most black widow binaries are detected through gamma and X-ray radiation emitted by the central pulsar, but MIT researchers use visible light to detect this system.

Check out our Latest News and Follow us at Facebook

Original Source

Exit mobile version