Asteroid Discovery Suggests Ingredients for Life on Earth Came From Space

Two organic compounds essential for living organisms have been found in samples retrieved from the asteroid Ryugu, buttressing the notion that some ingredients crucial for the advent of life arrived on Earth aboard rocks from space billions of years ago.

Scientists said on Tuesday they detected uracil and niacin in rocks obtained by the Japanese Space Agency’s Hayabusa2 spacecraft from two sites on Ryugu in 2019. Uracil is one of the chemical building blocks for RNA, a molecule carrying directions for building and operating living organisms. Niacin, also called Vitamin B3 or nicotinic acid, is vital for their metabolism.

The Ryugu samples, which looked like dark-gray rubble, were transported 155 million miles (250 million km) back to Earth and returned to our planet’s surface in a sealed capsule that landed in 2020 in Australia’s remote outback for analysis in Japan.

Scientists long have pondered about the conditions necessary for life to arise after Earth formed about 4.5 billion years ago. The new findings fit well with the hypothesis that bodies like comets, asteroids and meteorites that bombarded early Earth seeded the young planet with compounds that helped pave the way for the first microbes.

Scientists previously detected key organic molecules in carbon-rich meteorites found on Earth. But there was the question of whether these space rocks had been contaminated by exposure to the Earth’s environment after landing.

“Our key finding is that uracil and niacin, both of which are of biological significance, are indeed present in extraterrestrial environments and they may have been provided to the early Earth as a component of asteroids and meteorites. We suspect they had a role in prebiotic evolution on Earth and possibly for the emergence of first life,” said astrochemist Yasuhiro Oba of Hokkaido University in Japan, lead author of the research published in the journal Nature Communications.

“These molecules on Ryugu were recovered in a pristine extraterrestrial setting,” Oba said. “It was directly sampled on the asteroid Ryugu and returned to Earth, and finally to laboratories without any contact with terrestrial contaminants.”

RNA, short for ribonucleic acid, would not be possible without uracil. RNA, a molecule present in all living cells, is vital in coding, regulation and activity of genes. RNA has structural similarities to DNA, a molecule that carries an organism’s genetic blueprint.

Niacin is important in underpinning metabolism and can help produce the “energy” that powers living organisms.

The researchers extracted uracil, niacin and some other organic compounds in the Ryugu samples by soaking the material in hot water and then performing analyses called liquid chromatography and high-resolution mass spectrometry.

Organic astrochemist and study co-author Yoshinori Takano of the Japan Agency for Marine-Earth Science and Technology (JAMSTEC) said he is now looking forward to the results of analyses on samples being returned to Earth in September from another asteroid. The U.S. space agency NASA during its OSIRIS-REx mission collected samples in 2020 from the asteroid Bennu.

Oba said uracil and niacin were found at both landing sites on Ryugu, which is about a half-mile (900 meters) in diameter and is classified as a near-Earth asteroid. The concentrations of the compounds were higher at one of the sites than the other.

The sample from the site with the lower concentrations was derived from surface material more susceptible to degradation induced by energetic particles darting through space, Oba said. The sample from the other site was mainly derived from subsurface material more protected from degradation, Oba added.

Asteroids are rocky primordial bodies that formed in the early solar system. The researchers suggest that the organic compounds found on Ryugu may have been formed with the help of chemical reactions caused by starlight in icy materials residing in interstellar space.

© Thomson Reuters 2023


After facing headwinds in India last year, Xiaomi is all set to take on the competition in 2023. What are the company’s plans for its wide product portfolio and its Make in India commitment in the country? We discuss this and more on Orbital, the Gadgets 360 podcast. Orbital is available on Spotify, Gaana, JioSaavn, Google Podcasts, Apple Podcasts, Amazon Music and wherever you get your podcasts.

 

Affiliate links may be automatically generated – see our ethics statement for details.

Check out our Latest News and Follow us at Facebook

Original Source

Building Blocks of Life Discovered on Asteroid Located 200 Million Miles Away From Earth

Scientists have discovered the building ingredients of life on an asteroid in space for the first time. More than 20 amino acids have been identified on the space rock Ryugu, which is more than 200 million miles from Earth. Scientists studied materials taken from the asteroid by the Japan Aerospace Exploration Agency’s (JAXA) Hayabusa2 probe, which landed on Ryugu in 2018. The spacecraft retrieved 0.2 ounces (5.4 grams) of material from the asteroid’s surface and subsurface in 2019, stored it in an airtight container, and returned it to Earth. Ryugu is made up of several small boulders rather than a single huge boulder.

Ryugu is rich in carbon-rich organic stuff, much of which is thought to have come from the same nebula that gave birth to the Sun and the Solar System around 4.6 billion years ago. Water has also been found on the asteroid, according to previous sample research.

The pitch-black asteroid samples, which only reflect 2 to 3 percent of the light that touches them, have not been modified by interactions with Earth‘s environment, giving them a chemical makeup far closer to that of the early Solar System.

Geochemist Nicolas Dauphas, one of the three University of Chicago researchers who worked with the Japan-led team of scientists, said that they only had a few of these rocks to analyse earlier, and they were all meteorites that had been housed in museums for decades to centuries, changing their compositions. So, Dauphas added, it was remarkable to have immaculate samples from outer space because they are eyewitnesses from places of the solar system nobody has visited before.

Hiroshi Naraoka, a planetary scientist at Kyushu University and the leader of the team that looked for organic matter in the samples, said while outlining the findings at the Lunar and Planetary Science Conference in March that they found a variety of prebiotic chemical molecules in the samples, including proteinogenic amino acids, polycyclic aromatic hydrocarbons akin to terrestrial petroleum, and a variety of nitrogen compounds.

Sample analysis initially found 10 amino acid kinds, but the number has already risen to more than 20. Amino acids are the basic building blocks of all proteins and are required for life to exist on our planet.

The first collection of these findings, published in Science, reveals Ryugu’s makeup.

For now, the researchers are analysing Ryugu samples, and additional information about the asteroid’s makeup will be released soon.


Check out our Latest News and Follow us at Facebook

Original Source

Exit mobile version