NASA’s New Horizons Data Helps Identify a Possible Source for Pluto’s Moon Charon’s Red Cap

Scientists combined data from NASA’s New Horizons mission with novel laboratory experiments and exospheric modelling to reveal the likely composition of the red cap on Pluto’s moon Charon and how it may have formed. This first-ever description of Charon’s dynamic methane atmosphere using new experimental data provides a fascinating glimpse into the origins of this moon’s red spot as described in two recent articles. “Prior to New Horizons, the best Hubble images of Pluto revealed only a fuzzy blob of reflected light,” said SwRI’s Randy Gladstone, a member of the New Horizons science team. “In addition to all the fascinating features discovered on Pluto’s surface, the flyby revealed an unusual feature on Charon, a surprising red cap centred on its north pole.”

Soon after the 2015 encounter, New Horizons scientists proposed that a reddish “tholin-like” material at Charon’s pole could be synthesized by ultraviolet light breaking down methane molecules. These are captured after escaping from Pluto and then frozen onto the moon’s polar regions during their long winter nights. Tholins are sticky organic residues formed by chemical reactions powered by light, in this case, the Lyman-alpha ultraviolet glow is scattered by interplanetary hydrogen molecules.

“Our findings indicate that drastic seasonal surges in Charon’s thin atmosphere, as well as light breaking down the condensing methane frost, are key to understanding the origins of Charon’s red polar zone,” said SwRI’s Dr Ujjwal Raut, lead author of a paper titled “Charon’s Refractory Factory” in the journal Science Advances. “This is one of the most illustrative and stark examples of surface-atmospheric interactions so far observed at a planetary body.”

The team realistically replicated Charon surface conditions at SwRI’s new Center for Laboratory Astrophysics and Space Science Experiments (CLASSE) to measure the composition and colour of hydrocarbons produced on Charon’s winter hemisphere as methane freezes beneath the Lyman-alpha glow. The team fed the measurements into a new atmospheric model of Charon to show methane breaking down into residue on Charon’s north polar spot.

“Our team’s novel ‘dynamic photolysis’ experiments provided new limits on the contribution of interplanetary Lyman-alpha to the synthesis of Charon’s red material,” Raut said. “Our experiment condensed methane in an ultra-high vacuum chamber under exposure to Lyman-alpha photons to replicate with high fidelity the conditions at Charon’s poles.”

SwRI scientists also developed a new computer simulation to model Charon’s thin methane atmosphere.

“The model points to ‘explosive’ seasonal pulsations in Charon’s atmosphere due to extreme shifts in conditions over Pluto’s long journey around the Sun,” said Dr Ben Teolis, lead author of a related paper titled “Extreme Exospheric Dynamics at Charon: Implications for the Red Spot” in Geophysical Research Letters.

The team input the results from SwRI’s ultra-realistic experiments into the atmospheric model to estimate the distribution of complex hydrocarbons emerging from methane decomposition under the influence of ultraviolet light. The model has polar zones primarily generating ethane, a colourless material that does not contribute to a reddish colour.

“We think ionizing radiation from the solar wind decomposes the Lyman-alpha-cooked polar frost to synthesize increasingly complex, redder materials responsible for the unique albedo on this enigmatic moon,” Raut said. “Ethane is less volatile than methane and stays frozen to Charon’s surface long after spring sunrise. Exposure to the solar wind may convert ethane into persistent reddish surface deposits contributing to Charon’s red cap.”

“The team is set to investigate the role of solar wind in the formation of the red pole,” said SwRI’s Dr Josh Kammer, who secured continued support from NASA‘s New Frontier Data Analysis Program.


Check out our Latest News and Follow us at Facebook

Original Source

Researchers Unravel The Origin And Composition Of Red Spot On Pluto’s Moon Charon

Combining data obtained from several sources, scientists have managed to unravel the mystery behind the red cap on Pluto’s moon Charon and its composition. NASA’s interplanetary space probe New Horizons had captured the reddish region on the top of Charon and collected data in 2015. After the encounter, scientists soon speculated that the tholin-like material on Pluto’s moon could be synthesized by breaking down methane molecules with the help of ultraviolet light.

However, now, scientists from the Southwest Research Institute (SwRI) combined data from the New Horizons mission, exospheric modeling, and laboratory experiments to describe the red spot and shed more light on its origin.

“Prior to New Horizons, the best Hubble images of Pluto revealed only a fuzzy blob of reflected light. In addition to all the fascinating features discovered on Pluto’s surface, the flyby revealed an unusual feature on Charon, a surprising red cap centred on its north pole,” said SwRI’s Randy Gladstone, a member of the New Horizons science team.

The tholins, on the red spot, tend to escape from the surface of Pluto and get frozen upon reaching Charon’s polar region during long winter nights. These are basically sticky organic residues that are the result of chemical reactions powered by light.

“Our findings indicate that drastic seasonal surges in Charon’s thin atmosphere, as well as light breaking down the condensing methane frost, are key to understanding the origins of Charon’s red polar zone,” said SwRI’s Dr. Ujjwal Raut, lead author of the study published in Science Advances.

For the study, the team replicated conditions on Charon’s surface at SwRI’s new Center for Laboratory Astrophysics and Space Science Experiments (CLASSE). They analysed the composition and colour of the hydrocarbons produced in Charon’s winter hemisphere and fed the data into a new model of Charon. This helped them demonstrate how methane was breaking down into residue on Charon’s north pole. According to Raut, their “‘dynamic photolysis” experiment offered information on the role of interpolantary Lyman-alpha in the formation of Charon’s red material.

After conducting experiments, the researchers used a model to estimate the distribution of complex hydrocarbons that emerged in the decomposition of methane under ultraviolet light. “We think ionizing radiation from the solar wind decomposes the Lyman-alpha-cooked polar frost to synthesize increasingly complex, redder materials responsible for the unique albedo on this enigmatic moon,” said Raut. He added that as ethane is less volatile than methane it stays frozen on the Charon’s surface for long after spring sunrise. “Exposure to the solar wind may convert ethane into persistent reddish surface deposits contributing to Charon’s red cap,” Raut said.

Check out our Latest News and Follow us at Facebook

Original Source

Exit mobile version